matlab系列文章: 目录
一、题目
- (1) 读取附件1
sd.xlsx
,以相邻两列数据绘制散点图并标注;以第 1,2,4 列数据绘制空间散点图 - (2) 根据下面图形写出作图语句
- ①
y
=
s
i
n
x
y=sinx
y
=
c
o
s
x
y=cosx
- ②
y
=
s
i
n
x
y=sinx
y
=
c
o
s
x
y=cosx
- ①
- (3) 数组
[
2
,
5
,
10
,
12
,
13
,
7
,
2
,
10
,
4
,
6
,
8
,
8
,
4
,
7
,
8
]
[2,5,10,12,13,7,2,10,4,6,8,8,4,7,8]
- (4) 绘制空间曲线
x
=
e
0.3
t
s
i
n
t
x=e^{0.3t}sint
y
=
e
0.3
t
c
o
s
t
y=e^{0.3t}cost
z
=
e
0.3
t
z=e^{0.3t}
t
∈
[
0
,
6
π
]
t∈[0,6 pi]
- (5) 使用
mesh
、surf
绘制曲面z
=
f
(
x
,
y
)
=
s
i
n
x
2
+
y
2
x
2
+
y
2
,
x
.
y
∈
[
−
10
,
10
]
z=f(x,y)=frac{sin{sqrt{x^2+y^2}}}{sqrt{x^2+y^2}},x.yin[-10,10]
- (6) 绘制上半球面
z
=
4
−
x
2
−
y
2
z=sqrt{4-x^2-y^2}
z
+
2
=
x
2
+
y
2
z+2=sqrt{x^2+y^2}
- (7) 平面
z
=
2
x
−
3
y
z=2x-3y
z
=
x
2
−
2
y
2
z=x^2-2y^2
二、解答
>> [num1]=xlsread('F:sd.xlsx',1,'A1:B191')
>> [num2]=xlsread('F:sd.xlsx',1,'D1:E191')
>> [num3]=xlsread('F:sd.xlsx',1,'G1:H40')
题一
① 读取附件1 sd.xlsx,以相邻两列数据绘制散点图并标注
>> scatter(num1(:,[1]),num1(:,[2]),[],'b','filled')
>> hold on
>> scatter(num2(:,[1]),num2(:,[2]),[],'r','filled')
>> hold on
>> scatter(num3(:,[1]),num3(:,[2]),[],'black','filled')
>> title('shu ju A B C san dian tu')
>> legend('shu ju zu A','shu ju zu B','shu ju zu C')
② 以第 1,2,4 列数据绘制空间散点图
>> scatter3(num1(:,[1]),num1(:,[2]),num2(:,[1]),'filled')
题二
①
y
=
s
i
n
x
y=sinx
y=sinx,
y
=
c
o
s
x
y=cosx
y=cosx 在同一幅图
>> x = 0:0.01:2*pi
>> y1 = sin(x)
>> y2 = cos(x)
>> plot(x,y1,x,y2)
>> title('The graph of sinx and cosx','color','b')
>> legend('y=cosx','y=sinx')
②
y
=
s
i
n
x
y=sinx
y=sinx,
y
=
c
o
s
x
y=cosx
y=cosx 在同一幅图不同窗口
>> subplot(1,2,1)
>> plot(x,y1)
>> title('y=sinx')
>> box off
>>
>> subplot(1,2,2)
>> plot(x,y2)
>> title('y=cosx')
>> box off
题三
数组
[
2
,
5
,
10
,
12
,
13
,
7
,
2
,
10
,
4
,
6
,
8
,
8
,
4
,
7
,
8
]
[2,5,10,12,13,7,2,10,4,6,8,8,4,7,8]
[2,5,10,12,13,7,2,10,4,6,8,8,4,7,8]
>> % 读数据
>> data = [2,5,10,12,13,7,2,10,4,6,8,8,4,7,8]
① 竖直柱状图
>> bar(data)
② 水平柱状图
>> barh(data)
③ 立体柱状图
>> bar3(data)
④ 饼状图
>> pie(data)
题四
① 绘制空间曲线
x
=
e
0.3
t
s
i
n
t
x=e^{0.3t}sint
x=e0.3tsint,
y
=
e
0.3
t
c
o
s
t
y=e^{0.3t}cost
y=e0.3tcost,
z
=
e
0.3
t
z=e^{0.3t}
z=e0.3t,
t
∈
[
0
,
6
π
]
t∈[0,6 pi]
t∈[0,6π]
>> t = 0:0.01:6*pi
>> x = exp(0.3*t).*sin(t)
>> y = exp(0.3*t).*cos(t)
>> z = exp(0.3*t)
>> plot3(x,y,z)
题五
① 使用 mesh、surf 绘制曲面
z
=
f
(
x
,
y
)
=
s
i
n
x
2
+
y
2
x
2
+
y
2
,
x
.
y
∈
[
−
10
,
10
]
z=f(x,y)=frac{sin{sqrt{x^2+y^2}}}{sqrt{x^2+y^2}},x.yin[-10,10]
z=f(x,y)=x2+y2sinx2+y2,x.y∈[−10,10]
>> x = -10:0.25:10
>> y = -10:0.25:10
>> [x,y] = meshgrid(x,y)
>> R = (x.^2+y.^2).^(1/2)
>> z = sin(R)./R
>>
>> mesh(x,y,z)
>>
>>
Ⅰ、mesh 图像
Ⅱ、surf 图像
题六
① 绘制上半球面
z
=
4
−
x
2
−
y
2
z=sqrt{4-x^2-y^2}
z=4−x2−y2 与锥面
z
+
2
=
x
2
+
y
2
z+2=sqrt{x^2+y^2}
z+2=x2+y2 所围成的立体
>> x=-2:0.01:2;
>> y=-2:0.01:2;
>> [x,y]=meshgrid(x,y);
>> z1=real(sqrt(4-x.^2-y.^2));
>> z2=sqrt(x.^2+y.^2)-2;
>> surf(x,y,z1),shading flat
>> hold on
>> z2(z2>0)=NaN;
>> surf(x,y,z2),shading flat
题七
① 平面
z
=
2
x
−
3
y
z=2x-3y
z=2x−3y 截马鞍面
z
=
x
2
−
2
y
2
z=x^2-2y^2
z=x2−2y2
>> x = -20:.1:20
>> y = -20:.1:20
>> [x,y]=meshgrid(x,y)
>> z1 = 2*x-3*y
>> z2 = x.^2-2*y.^2
>> mesh(x,y,z1)
>> hold on
>> mesh(x,y,z2)
暂无评论内容